
1

4-Bit High-Speed Binary Ling Adder
Projjal Gupta (Member, IEEE), Ritika Bhatia and Abhishek Kudiri

Electronics and Communication Engineering
SRM University, Kattankulathur

Abstract—Binary addition is one of the most primitive and
most commonly used applications in computer arithmetic. A large
variety of algorithms and implementations have been proposed
for binary addition. Huey Ling proposed a simpler form of CLA
equations which rely on adjacent pair bits (ai, bi) and (ai1,
bi1). Along with bit generate and bit propagate, we introduce
another prefix bit, the half sum bit. Ling adder increases the
speed of n-bit binary addition, which is an upgrade from the
existing Carry-Look-Ahead adder. Several variants of the carry
look-ahead equations, like Ling carries, have been presented that
simplify carry computation and can lead to faster structures. Ling
adders, make use of Ling carry and propagate bits, in order to
calculate the sum bit. As a result, dependency on the previous bit
addition is reduced; that is, ripple effect is lowered. This paper
provides a comparative study on the implementation of the above
mentioned high-speed adders.

Keywords—Ling Adder, High Speed Binary Adder, Binary Addi-
tion.

I. INTRODUCTION

The family of Ling adders is a particularly fast adder and is
designed using H. Ling’s equations and generally implemented
in BiCMOS. It is an upgrade to the already existing Carry-
Look-Ahead Adders and is mathematically faster, as it requires
lesser steps for the computation of a sum. The circuit of a Ling
adder is particularly more complex, and is less favourable for
use in VLSI systems due to its complexity and it requires far
more extra components than traditional systems. The circuit
is divided into 4 parts, which can be denoted by H. Ling’s
equations.

II. ANALYSIS OF LING’S EQUATION

A. Initial Generation of Bits
Ling Adders require to form the bit generate and bit pro-

pogate that are used in the regular Carry look ahead adders. It
is denoted by the 3 symbols gi, pi and di.
The generate and propagate bits follow CLA so they can be
denoted as,

gi = ai · bi
pi = ai + bi

However, Ling adder requires an extra half bit term which
later on simplifies the circuit design, while increasing the
overall efficiency of the adder. This half bit generate is denoted
by di and can be mathematically shown by,

di = ai ⊕ bi

The above mentioned Generate Bit gi and Propagate Bit
pi are used further to derive the Ling Generates, which are

terms that will go on to simplify the final equation. This is
particularly important because these generates will form the
base of the Ling adder circuit design. These are denoted by
G∗i and P ∗i

B. The CLA Basis of Ling’s Equations

The CLA depends upon the carry out term of the previous
for the new carry terms.

ci+i = gi + pi · ci

which is similar to the Simple Ripple Adder which uses
the carry output of the preceding data bits for forward addition.

Similarly based on the above concept, Ling created a new
theoretical carry generate which he denoted by H. This is used
later on in the Adder to generate the sum Si. The term H is
given by,

Hi = ci + ci−1

where,
ci = Hi · pi

Introduction of ling carry Hi is one of the major reasons
why Ling Adder is a fast yet complex adder. Use of Ling
carry equations decreases the number of boolean terms during
its operations, but increases the design complexity.

2

C. Ling Generate and Propagate
Ling proposed the use of Ling Propagate and Ling Generate

to simplify the operations of the Ling adder. It is very
important, as this is the first step where we can see how the
terms are generated by using the ith and (i−1)th terms. These
terms can be derived by

G∗i = gi + gi−1

and
P ∗i = pi · pi−1

Ling generate and propagate terms are used to calculate the
Ling carry term H . Later on in the Adder design, the sum
terms are directly influenced by the all the Ling terms.

D. Ling Sum Term
The final sum term for the ith pair terms of a and b are

devised by following Ling sum equations, which take in lesser
number of inputs, and hence decrease the lag in the system.

If we assume that all input gates have only two inputs, we
can see that calculation of CLA carry C requires 5 logic levels,
whereas that for ling carry H requires only four. Although the
computation of carry is simplified, calculation of the sum bits
using Ling carries is much more complicated. The sum bit,
when calculated by using traditional carry, is given to be,

si = di ⊕ ci−1

We note that we require to use both the carry output and
half-bit term from the first operation block.

ci = Hi · pi

Using the above term in the Ling Sum Equation,

si = di ⊕ pi−1 ·Hi−1

on break down,

si = H ′i−1 ⊕ di +Hi−1(di ⊕ pi−1)

Hence, the output value for ai + bi is given by si and ci.

III. LING CARRY EQUATION

A. General expansion and Substitution
Earlier in the CLA basis subsection of Ling Equation

analysis, we came across 2 equations,

Hi = ci + ci−1

and,
ci = Hi · pi

Since we know that,

ci+1 = gi + pi · ci
Thus we can write the Carry Output as,

Hi = gi + gi−1 + pi−1 · gi−1 + pi−1 · pi−2 · gi−2 +

+pi−1 · pi−2 · pi−1 · · p1 · p0 · g0
But we know that,

G∗i = gi + gi−1

3

P ∗i = pi · pi−1
Thus we can simplify the H equations to Ling generate-

propagate terms.

B. Application in 4-Bit System
In a 4-bit adder design, we require the terms H3, H2, H1

and H0.
From the Ling generate-propagate equations and the ex-

panded Ling Carry equation in the previous subsection, we
can write the 4 terms as,

H3 = G3 + P2 ·G1

H2 = G2 + P1 ·G0

H1 = G1

H0 = G0

It is noted that the complexity of the system will increase
with increase of Input terms.

IV. LOGIC DESIGN OF 4-BIT LING ADDER

From all the above sections and designs, we can design the
4 bit Ling Adder.

As per the design, The flowing outputs are passed through
basic OR and AND gates to satisfy H equations.The carry is
safely calculated as c4

c4 = H4 · p4
Similarly, each block present in the Logic Diagram represents
an operation step described in each subsection of the logic
analysis.
The use of free gates in the circuit represent the operations used
to calculate Hi. The initial g−1 and p−1 dont exist during the
case i = 0 and hence they are taken as logical false or zero
value by grounding them.
Effectively, the overall circuit follows the final equation

s = a+ b

and generates a carry term in-case the overall sum exceeds the
4-bit output range.

4

V. PCB AND CAD DESIGN

The system can be designed in real time by the use of actual
logic gate ICs belonging to the 74xx family. These ICs usually
consist of 16 (DIL16) or 14 (DIL14) pins, and require low
power. From the above Logisim design of the Ling Adder,
we can start designing the same circuit on any EDA or CAD
software. Due to its high complexity, the circuit has to be
designed on the both sides of a pcb and uses multiple vias for
the on-board connections.

VI. CONCLUSION

Hence, a basic 4-Bit Ling adder circuit was designed
according to Huey Ling’s equations. In 4-Bit arithmetic
system, the CLA requires 5 terms, whereas the Ling adder
requires a maximum input of 4 terms, thereby decreasing the
time required for computation. When this adder is cascaded
for higher number of Bit input terms, the CLA will come
across an increase in operation times. But in a ling adder,
this time increase would be much lesser than the other binary
adders.

ACKNOWLEDGMENT

The authors would like to thank Mr. AVM Manikandan
(Asst. Professor, ECE Dept.) for his teachings, his support and
guidance, under which the project was successfully completed.

REFERENCES

[1] H. Ling, ”High Speed Binary Parallel Adder”, IEEE Transactions on
Electronic Computers, EC-15, p. 799-809, October, 1966

[2] G. Dimitrakopoulos ,D. Nikolos, ”High-speed parallel-prefix VLSI Ling
adders”, IEEE Transactions on Computers, January, 2005

[3] Deepa Yagain, Vijaya Krishna A, and Akansha Baliga, Design of High-
Speed Adders for Efficient Digital Design Blocks, ISRN Electronics, vol.
2012, Article ID 253742, 9 pages, 2012. doi:10.5402/2012/253742

[4] N. T. Quach, M. J. Flynn, ”High-Speed Addition in CMOS”, IEEE
Transactions on Computers, Vol.41, No.12, December, 1992.

